
24 The Delphi Magazine Issue 40

COM Corner: Shell
Namespace Extensions
by Steve Teixeira

We’re all developers here, so
I’m going to be straight with

you. Sometimes COM is just too
hard. Take namespace extensions:
they provide a nifty way for devel-
opers to make their applications
look and feel as if they are an inte-
grated part of Windows Explorer.
However, the price of entry for this
novelty is that you must implement
a few dozen methods using a hand-
ful of vaguely documented inter-
faces across multiple COM objects.
As a consultant, I work with clients
on the design and architecture of
their systems. Many times, I rec-
ommend COM as a framework for a
software system, only to be told
‘we thought about using COM, but
it’s too complex.’ Maybe I can help
with this by illuminating the trail
when the going gets rough. Which
brings us back to namespace
extensions...

What? Why?
So, what is a namespace and why
would I want to extend it?
Generically, a namespace is a col-
lection of symbols within some
entity. For example, a Pascal unit
implies a namespace comprising
all the types, constants and vari-
ables declared in it. Namespaces
can be nested: for example a proce-
dure can exist globally in a unit,
whereas a local variable of that
procedure could be said to exist
within the namespace of that pro-
cedure. The Explorer shell uses the
concept of namespaces to organize
all the objects that live in the shell.
For example, the Desktop contains
My Computer, which in turn con-
tains things like your hard disk and
dial-up networking. Microsoft
refers to this hierarchical collec-
tion of files, devices, and other
objects as the shell namespace.

All those drives and devices are
useful, but what happens when you
want to write code that displays

your own view of some information
as if it were a part of the shell? The
answer is namespace extensions.
They make it possible for you to
extend the shell by writing a spe-
cial COM server that manages the
details of integrating your data
within the shell’s hierarchy. It is
your namespace extension’s job to
provide Explorer with the cap-
tions, icons and details of the items
in your namespace. Namespace
extensions can also provide extra
functionality, like drag-and-drop
support or context menus.

Terminology
Before we can jump into the details
we must clear up a few points of
terminology. To accomplish this
hierarchical arrangement, the
Explorer uses folders and file
objects: analogous to directories
and files in a file system. An exam-
ple of a folder is My Documents,
which contains file objects repre-
senting the physical files in that
folder. It’s important to note, how-
ever, that file objects don’t have to
be files. For example, the Dial-Up
Networking folder contained within
My Computer contains dial-up con-
nection objects that do not neces-
sarily map to disk files. Within the
shell, each file object is repre-
sented by an identifier, unique
within its parent folder’s
namespace, called an item identi-
fier. An item identifier list uniquely
identifies a file object within the
entire shell namespace because it
contains the entire path name of
the object. Most often, pointers to
item identifier lists are passed
around within the shell to identify
file objects, and they are known as
pidls (pronounced ‘piddles’).

Roots
You have two options for
integrating your namespace exten-
sion with the shell: rooted or

nonrooted. Nonrooted extensions
are most common, as they enable
users to browse into your
namespace using Explorer. In this
case, the Desktop serves as the
root for your namespace exten-
sion, which is nested within the
desktop’s namespace. Rooted
namespace extensions imply a
completely separate namespace,
and you must run a new instance of
Explorer to browse the namespace
extension. From a code perspec-
tive, there’s little difference
between rooted and nonrooted.
The motivating factor for choosing
one or the other is how you want
your extension to interact with the
end-user and what you feel makes
sense for your purposes.

Conjunction Junction
Namespace extensions must have
some sort of jump-off point that
defines when the user leaves the
warmth and security of the default
shell and enters into the scary
world of the custom view provided
by the namespace extension. This
jump-off point is referred to as a
junction point. For example, the
junction point for the Recycle Bin
is on the Desktop and the junction
point for Dial-Up Networking is in
My Computer.

Structure
Namespace extensions require the
implementation of a number of
COM interfaces. First and foremost
is IShellFolder. This interface rep-
resents the folder object for your
namespace extension: the shell
will use it to obtain information on
items in your namespace and to
obtain pointers to other interfaces
in your extension. Table 1 lists the
methods of IShellFolder.

You will notice that the method
CreateViewObject is intended to
return an IShellView interface
pointer for this IShellFolder.
IShellView handles presentation of
a view of your namespace within
Explorer. IShellView contains the
methods described in Table 2.

In addition to these interfaces,
the namespace extension must
also implement IPersistFolder and
IEnumIDList. To provide more
interactive functionality for your



December 1998 The Delphi Magazine 25

extension, you can also provide
implementations for: IExtractIcon
(to provide items in your view with
icons), IContextMenu (to support
context menus on your view’s
items), IDataObject (for data trans-
fer) plus IDropSource and
IDropTarget (for drag-and-drop).

Implementation
I spend a lot of time messing
around with various COM servers
on my machine, registering and
unregistering them, so a real handy
tool for me would be a namespace
extension that enabled me to
browse all these COM servers. A
good junction point for this
extension is My Computer.

The first thing you need to do is
of course create a new COM server
application. You can do this by
first creating a new ActiveX server
and then adding a new COM object
to it using the COM object wizard. I
called my server ComNameExt. With
that out of the way, get ready to
implement lots of interfaces.
Actually, this is probably less than
you might think because there are
only a few key methods that need
to be implemented to create a
namespace extension. So, we’ll be
making extensive use of the
E_NOTIMPL return value. Keep in
mind that, since there are several
hundred lines of code associated
with the complete implementation
of this COM server, I can’t practi-
cally discuss every part of it here,
but I’ll certainly hit the highlights.
The disk contains the complete
source code for the COM server.

While all this interface stuff is
well and good, let’s not forget that
the brains of this extension is the
bit of code that runs through the
registry to find all the COM servers
registered. Fortunately, this is a
straightforward task since all the
COM servers live in the HKEY_
CLASSES_ROOT\CLSID area of the reg-
istry and Delphi’s TRegistry class
makes working with the registry
easy. The code in Listing 1 grabs
the COM servers and adds them to
a list object called ServList.

I mentioned pidls a bit earlier.
The nice thing about item IDs is
that they are user-defined. The first
word of the item ID record must be

the size of the record, and the rest
of the record holds whatever data
the implementer sees fit. In this
case, I store the CLSID for each COM
server. The record representing
my item ID is called TServInfo (see
the code on the disk).

One of the first methods the shell
calls after loading your namespace
extension is IShellFolder.Create
ViewWindow. You’ll recall this is the
method responsible for creating
and returning a new IShellView.
One important gotcha here is that
CreateViewObject can be called
many times on one IShellFolder to
create multiple distinct views, so
the implementation for IShellView
must exist in a separate object
from that which implements
IShellFolder. See CreateViewObject
on the disk.

While IShellFolder is the heart
of a namespace extension,
IShellView is the brains. The meth-
ods of this interface will serve as
the consumer for several of the
methods you implement in
IShellFolder. The first IShellView
method to be called is Create
ViewWindow. In this method, I create
an instance of a Delphi form that

contains a TListView and parent
that form into the owner window
passed in the hwndOwner parameter
of TViewObject.Create. Delphi has a
clear advantage over other tools
here. With a C++ tool, we’d have to
deal with message processing and
other housekeeping for windows
and controls created in the view.

The other key method is Refresh,
where the view items are enumer-
ated, listview items are created,
captions are obtained and icons
generated with the help of an
IExtractIcon from IShellFolder.
GetUIObjectOf. See Listing 2.

One of the first things Refresh
does is obtain an IEnumIDList enu-
merator using IShellFolder.
EnumObjects. The IEnumIDList
methods for the namespace exten-
sion are implemented by the
ServList object and aggregated
into IComNameExt using implements:

property ServList: TComServerList

read FServList write FServList

implements IEnumIDList;

➤ Table 2

➤ Table 1

Method Description

TranslateAccelerator Enables the view to process keystrokes before the shell acts on them.

EnableModeless Enables or disables modeless dialog boxes.

UIActivate Notifies view of focus and activation changes.

Refresh Refreshes display in response to user input, eg when F5 is pressed.

CreateViewWindow Creates window containing the view, usually one containing a listview.

DestroyViewWindow Destroys the window created in the above method.

GetCurrentInfo Retrieves the current settings for the folder view.

AddPropertySheetPages Allows the view to add pages to the Options property sheet.

SaveViewState Provides view with the opportunity to persistently store state settings.

SelectItem Changes the selection state of items within the view.

GetItemObject Retrieves an interface for data presented in the view.

Method Description

ParseDisplayName Translate the display name of an item into an item ID list.

EnumObjects Retrieves the IEnumIDList used to enumerate items in folder.

BindToObject Retrieves the IShellFolder for the specified folder.

BindToStorage Returns the storage instance of a subfolder.

CompareIDs Compare two file or folder objects based on their item ID lists.

CreateViewObject Creates and returns a new IShellView for this folder.

GetAttributesOf Retrieves the attributes of the specified file or folder.

GetUIObjectOf Obtains an IExtractIcon, IContextMenu, IDataObject, IDropSource, or
IDropTarget for the specified items.

GetDisplayNameOf Retrieves the display name of the specified item.

SetNameOf Sets the display name of the specified file or subfolder.



26 The Delphi Magazine Issue 40

ServList is of type TComServerList,
and descends from TList. The
method IEnumList.Next fills an
array of PItemIDLists with the
requested number of items.

Refresh also calls IShellFolder.
GetDisplayNameOf to get a display
string for the COM server: it simply
looks to the registry for the name
of the COM server (Listing 3).

Registration
I like COM servers to be com-
pletely self-contained, so registra-
tion of my namespace extension is

procedure TComNameExt.RefreshServerList;
var
Reg: TRegistry;
I, KeyIdx: Integer;
ClsidKeys, SubKeys: TStringList;
CurrentKey: string;

begin
Reg := TRegistry.Create;
ClsidKeys := TStringList.Create;
try
ServList.Clear;
Reg.RootKey := HKEY_CLASSES_ROOT;
if not Reg.OpenKeyReadOnly('CLSID') then
raise Exception.Create('Failed to open registry');

Reg.GetKeyNames(ClsidKeys);
Reg.CloseKey;
SubKeys := TStringList.Create;
try
for I := 0 to ClsidKeys.Count - 1 do begin
CurrentKey := ClsidKeys[I];
if Reg.OpenKeyReadOnly('CLSID\'+CurrentKey) then begin
Reg.GetKeyNames(SubKeys);
Reg.CloseKey;
KeyIdx := SubKeys.IndexOf('InprocServer32');
if KeyIdx < 0 then KeyIdx := SubKeys.IndexOf('LocalServer32');
if KeyIdx < 0 then Continue;
ServList.AddGuid(StringToGUID(CurrentKey));

end;
end;

finally
SubKeys.Free;

end;
finally
Reg.Free;
ClsidKeys.Free;

end;
end;

➤ Listing 1
handled in the DllRegisterServer
and DllUnregisterServer exports
for the COM server DLL.

This is easily accomplished by
creating a special TComServer
Factory descendent of the
TComNameExt class. Most notably,
the registration for this server
must establish the junction point
of the namespace extension, add it
to the ‘approved’ extensions under
Windows NT, plus establish attrib-
utes and a default icon for the
extension. The code for the
UpdateRegistry method of my
custom factory object is shown in
Listing 4.

Test Drive
Once you’re ready to try out the
namespace extension, it needs to
be registered, either from the Run
menu in the Delphi 4 IDE, or from
the command line using
regsvr32.exe or tregsvr.exe. Then
just open My Computer in the shell
to see the results.

Debugging Shell Extensions
Now that you know all about writ-
ing a namespace extension, you
might be thinking, ‘well, that’s all
jim-dandy, but my code usually
doesn’t run perfectly the first time,
how do I debug this thing?’ Great
question, I’m glad you asked.
Because shell extensions execute
from within the shell’s own pro-
cess, how is it possible to ‘hook
into’ the shell in order to debug
your shell extension?

The solution to the problem is
based on the fact that the shell is
an executable (not very different
than any other application) called
explorer.exe. This has a property,
however, that is kind of unique: the
first instance of explorer.exe will
invoke the shell. Subsequent
instances will simply invoke addi-
tional Explorer windows in the
shell.

Using a little known trick in the
shell, it’s possible to close the shell
without closing Windows. Follow
these steps to debug your shell
extensions in Delphi.

function TViewObject.Refresh: HResult;
var
EnumObj: IEnumIDList;
Folder: IShellFolder;
IconOMatic: IExtractIcon;
Fetched: ULONG;
ItemID: array[1..100] of PItemIDList;
Str: TStrRet;
ListItem: TListItem;
I, IconIndex: Integer;
IconIdx: Word;
IconFile: array[0..MAX_PATH] of char;
Icon: HICON;

begin
Result := S_OK;
try
FControlExt.RefreshServerList;
with FViewForm.ListView do begin
for I := 0 to Items.Count - 1 do
if Items[I].Data <> nil then
FControlExt.ShellMalloc.Free(Items[I].Data);

Items.Clear;
end;
FViewForm.ImageList.Clear;
Folder := FControlExt as IShellFolder;
Folder.EnumObjects(FOwner, SHCONTF_FOLDERS or
SHCONTF_NONFOLDERS or SHCONTF_INCLUDEHIDDEN, EnumObj);

while EnumObj.Next(100, ItemID[1], Fetched) = S_OK do
for I := 1 to Fetched do begin
ListItem := FViewForm.ListView.Items.Add;
ListItem.Data := ItemID[I];

OleCheck(Folder.GetDisplayNameOf(ItemID[I],0,Str));
case Str.uType of
STRRET_WSTR :
begin
ListItem.Caption :=
WideCharToString(Str.pOleStr);

FControlExt.ShellMalloc.Free(Str.pOleStr);
end;

STRRET_CSTR : ListItem.Caption := Str.cStr;
end;
if Folder.GetUIObjectOf(FOwner, 1, ItemID[I],
IExtractIcon, nil, Pointer(IconOMatic))
= S_OK then begin
IconOMatic.GetIconLocation(GIL_FORSHELL, IconFile,
SizeOf(IconFile), IconIndex, Fetched);

if Fetched and GIL_NOTFILENAME = 0 then begin
IconIdx := IconIndex;
Icon := ExtractAssociatedIcon(MainInstance,
IconFile, IconIdx);

if Icon <> 0 then
ListItem.ImageIndex := ImageList_AddIcon(
FViewForm.ImageList.Handle, Icon);

end;
end;

end;
except
on E: TObject do
Result := Controller.SafeCallException(E, ExceptAddr);

end;
end;

➤ Listing 2



December 1998 The Delphi Magazine 27

First make explorer.exe the host
application for your shell exten-
sion in the Run | Parameters dialog.
Be sure to include the full path (eg
c:\windows\explorer.exe).

Then, from the shell’s Start
menu, select Shut Down. This will
invoke the Shut Down Windows
dialog.

Thirdly, in the Shut Down Windows
dialog, hold down Ctrl+Alt+Shift
and click the No button. This will
close the shell without closing
Windows.

Next, using Alt+Tab, switch back
to Delphi and run the shell exten-
sion. This will invoke a new copy of
the shell running under the Delphi
debugger. You can now set break-
points in your code and debug as
usual.

Lastly, when you are ready to
close Windows, you can still do so
properly without using the shell.
Under Win95 or NT, use Ctrl+Esc to
invoke the Tasks window and then
select Windows | Shutdown Windows
to close Windows. Under Win98,
use Ctrl-Alt-Del to invoke the
Close Program dialog, and click the
Shut Down button.

More And More Features
There’s lots of functionality under
the umbrella of namespace exten-
sions, so there’s certainly room to
add more features to this demo.
For example, drag-and-drop could
be supported: you’d need to imple-
ment the IDragTarget, IDropTarget,
and IDataObject interfaces, and
return them via the IShellFolder.
GetUIObjectOf method. You would
also need to add to the SFGAO_*
flags found in the registration
code and in the IShellFolder.
GetAttributesOf method. One
other feature of namespace exten-
sions that this example didn’t dem-
onstrate was adding main menu
items and buttons to the Explorer
window. This can be done by
manipulating the shell’s
IShellBrowser interface, which is
passed to the IShellView.
CreateViewWindow method. There’s
a fine line between a demo you can
learn from and a functional piece of
software, and I wanted to avoid
bogging the implementation down
with all the little details. Maybe I’ll

add some features to this
namespace extension in a future
article.

Summary
Like I said, sometimes COM is just
too hard. While I’m the first one to
state that namespace extensions
can be a royal pain to implement, I
also firmly believe that the payoff
can be well worth the pain. There’s
nothing like integrating your appli-
cation so that it looks and feels like
a natural part of the Windows
Explorer. This discussion of
namespace extensions took you
through the terms, concepts, and
structure of namespace exten-
sions, and then into the specifics of
a Delphi implementation.

For further reading on this topic,
I recommend the MSDN library CD.

Hopefully namespace exten-
sions are now one area of COM that
just moved from hard to doable on
your difficulty scale, and you’re
ready to tackle an implementation
on your own.

Steve Teixeira is the Director of
Software Development at DeVries
Data Systems, specializing in
Inprise tools, and co-author of
Delphi 4 Developer’s Guide. Let
Steve know how you like COM
Corner and what you’d like to see
in future editions by emailing him
at steve@dvdata.com

procedure TNamespaceExtensionFactory.UpdateRegistry(Register: Boolean);
const
NamespaceKey = 'SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\' +
'MyComputer\Namespace\';

ApproveKey =
'SOFTWARE\Microsoft\Windows\CurrentVersion\Shell Extensions\Approved\';

var
ClsID: string;
Value: DWORD;

begin
ClsID := GUIDToString(Class_ComNameExt);
inherited UpdateRegistry(Register);
if Register then begin
CreateRegKeyEx(NameSpaceKey + ClsId, '', PChar(Description), REG_SZ,
Length(Description) + 1, HKEY_LOCAL_MACHINE);

if Win32Platform = VER_PLATFORM_WIN32_NT then
CreateRegKeyEx(ApproveKey, ClsId, PChar(Description), REG_SZ,
Length(Description) + 1, HKEY_LOCAL_MACHINE);

Value := SFGAO_FOLDER;
CreateRegKeyEx('CLSID\' + ClsId + '\ShellFolder\', 'Attributes',
@Value, REG_BINARY, SizeOf(DWORD), HKEY_CLASSES_ROOT);

CreateRegKey('CLSID\'+ClsId+'\DefaultIcon','',ComServer.ServerFileName+',0');
end else begin
RegDeleteKey(HKEY_LOCAL_MACHINE, PChar(NameSpaceKey + ClsId));
if Win32Platform = VER_PLATFORM_WIN32_NT then
DeleteRegValue(ApproveKey, ClsId, HKEY_LOCAL_MACHINE);

end;
end;

➤ Listing 4

function TComNameExt.GetDisplayNameOf(pidl: PItemIDList; uFlags: DWORD;
var lpName: TStrRet): HResult;

var
Guid: TGUID;
NameStr, GuidStr: string;
Reg: TRegistry;

begin
Result := S_OK;
try
FillChar(lpName, SizeOf(lpName), 0);
Guid := PServInfo(pidl)^.CLSID;
GuidStr := GuidToString(Guid);
lpName.uType := STRRET_CSTR;
if HiWord(uFlags) and (SHGDN_FORPARSING) = 0 then begin
Reg := TRegistry.Create;
Reg.RootKey := HKEY_CLASSES_ROOT;
Reg.OpenKeyReadOnly('CLSID\' + GuidStr);
NameStr := Reg.ReadString('');

end;
if NameStr = '' then
NameStr := GuidStr;

StrLCopy(lpName.cStr, PChar(NameStr), SizeOf(lpName.cStr));
except
on E: TObject do
Result := SafeCallException(E, ExceptAddr);

end;
end;

➤ Listing 3


	What? Why?
	Terminology
	Roots
	Conjunction Junction
	Structure
	Implementation
	Registration
	Test Drive
	Debugging Shell Extensions
	More And More Features
	Summary

